Optimum Conditions for Determination of the Stability of Weak Complexes

GUNNAR NORHEIM*

Chemical Institute A, University of Oslo, Blindern, Oslo 3, Norway

The optimum conditions for the spectrophotometric determination of the stability constant of weak complexes have been calculated for various compositions and different values of the stability constant. The ratio between the initial concentrations of the reactants at the optimum conditions are found from tables given.

When determining the composition, the stability constant, and the extinction coefficient of a weak complex, it is of considerable importance to choose the optimum conditions of measurement. The initial concentration of the reactants should be within certain limits depending on the stability constant, the extinction coefficient, and the composition. In the present paper the optimum conditions have been calculated for various compositions and stability constants.

Hammond,¹ using the Benesi-Hildebrand plot,² discusses the optimum conditions for some special cases. Person³ stated that the most accurate value for the stability constant of a complex is obtained when the equilibrium concentration of the complex is of the same order of magnitude as the equilibrium concentration of the more dilute component. If a is the initial concentration of the component in excess, and K is the stability constant, then according to Person,³ 0.1/K < a < 9.0/K for a 1:1 complex.

For weak complexes with other compositions it is more difficult to calculate the optimum conditions. In the present investigation the optimum conditions were calculated for a selection of complexes with different compositions, stability constants and extinction coefficient.

^{*} Present address: Institute of Forensic Medicine, University of Oslo, Rikshospitalet, Oslo 1, Norway.

THEORY

Considering the equilibrium:

$$m\mathbf{A} + n\mathbf{B} = \mathbf{A}_{m}\mathbf{B}_{m} \tag{1}$$

the stability constant is:

$$K = \frac{c}{(a - mc)^m (b - nc)^n} \tag{2}$$

where c is the concentration of complex, and a and b are the initial concentrations of A and B. This can be transformed into

$$(a-mc)^{m}(b-nc)^{n}-c/K = 0 (3)$$

and if y=c/b and x=a/b, this becomes

$$(x-my)^{m}(1-ny)^{n}-y/Kb^{m+n-1}=0$$
(4)

 $100 \times ny$ is the percentage of B complexed. If b is kept constant, a is varied, and $1/Kb^{m+n-1}$ is chosen, a and y can be calculated from eqn. (4). The coefficient $1/Kb^{m+n-1}$ is defined by

$$W = 1/Kb^{m+n-1} \tag{5}$$

Presupposing the validity of the Beer-Lambert law, the extinction $E = \varepsilon dc$ where ε is the molar extinction coefficient, d is the cell length and c the concentration of the complex. At infinite excess of A the above expression becomes $E_0 = \varepsilon db/n$. Thus

$$W = \frac{(\varepsilon d)^{m+n-1}}{K(nE_0)^{m+n-1}} \tag{6}$$

W is not a constant for a given complex (nE_0 and d can have different values), but the expression is useful for establishing the optimum conditions. W is particularly useful for calculating theoretical mole ratio curves. W determines the form of the more ratio curve, and it is a measure of the deviation from the curve of the infinite stable complex this being only straight lines. Therefore W is the limiting factor when spectrophotometric data are used to determine the stability of complexes. It also demonstrates the importance of choosing the right cell length, especially for complexes where m or n are greater than 1.

OPTIMUM CONDITIONS

It was considered of interest to calculate the optimum conditions in order to establish the value of y which gives the best value of K. If it is assumed that it is the standard deviation σ_y in y which mainly determines the standard deviation σ_K in K, it can be shown from eqn. (4) that

$$\sigma_K = \sqrt{\left(\frac{\partial K}{\partial y} \sigma_y\right)^2} = K\left(\frac{1}{y} + \frac{m^2}{x - my} + \frac{n^2}{1 - ny}\right) \sigma_y \tag{7}$$

Acta Chem. Scand. 23 (1969) No. 8

where y=c/b and x=a/b. A combination of eqns. (4) and (7) gives:

$$\frac{\sigma_K}{nK\sigma_v} = \frac{1}{ny} + \frac{m^2}{n} \left(\frac{(1-ny)^n K b^{m+n-1}}{y} \right)^{1/m} + \frac{n}{1-ny}$$
 (8)

Eqn. (8) can be expressed graphically with $\sigma_K/nK\sigma_y$ as ordinate and ny as abscissa, ny being varied between 0 and 1.0. The function has one minimum in this range. For 1:1 complexes $\sigma_K/K\sigma_y$ has its minimum value for $y=y_{\rm op}$

$$y_{\rm op} = \frac{Kb+1}{Kb} \left(1 - \frac{1}{\sqrt{Kb+1}} \right) \tag{9}$$

It can be shown that $y_{op} > 0.5$ when Kb > 0.

In Fig. 1 curves are drawn for some special compositions and values of W. The equation for these curves can be written z=f(ny), where $z=\sigma_K/nK\sigma_y$. From these curves z_{\min} can be found, the abscissa in this point gives the optimum value of ny.

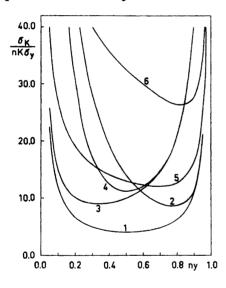


Fig. 1. $\sigma_K/nK\sigma_y$ drawn as function of ny. Curve 1: 1:1 W=10.0; Curve 2: 1:1 W=0.1; Curve 3: 1:4 W=10.0; Curve 4: 1:4 W=0.1; Curve 5: 4:1 W=10.0; Curve 6: 4:1 W=0.1.

For these curves the ordinate is a measure for the relative error in K, this error is smallest for the weakest complexes. For high values of W there is little difference in the ordinate values for the different compositions. For W=1.0 and 0.1 the curves are more different, and this restricts the abscissa values that can be used. The curves for W>10 would have been similar to the W=10 case.

When calculating the curves in Fig. 1, it was assumed that the standard deviation σ_x in the x is zero, but curves with the same ordinate can be calculated for any value of the ratio σ_x/σ_y . In practical cases one has always the fact that $\sigma_x<\sigma_y$, and for reasonable values of σ_x/σ_y the curves would be only slightly different from those in Fig. 1. For $\sigma_x/\sigma_y=0.25$ the ordinate values increase with less than 2 %.

OPTIMUM FACTOR

From eqn. (8) the minimum in the ordinate z_{\min} can be found. The abscissa value in this point is designated y_{op} and for this value x_{op} can be found from eqn. (4). When determining the stability constant of a weak complex, x=a/b should be varied around the value $x=x_{\text{op}}$.

To classify theoretical spectrophotometric data calculated from eqn. (4), an optimum factor $N_{\rm op}$ has been defined. For an ordinate $z_1>z_{\rm min}$ the line $z=z_1$ is drawn (Fig. 1). The abscissa values in the points of intersection between this line and the curve z=f(ny) are designated ny_1 and ny_2 . The area limited by this line and the curve z=f(ny) is defined as the optimum factor $N_{\rm op}$

$$N_{\rm op} = z_1(ny_2 - ny_1) - \int_{ny_1}^{ny_2} f(ny) d(ny)$$
 (10)

When y_1 and y_2 are given, the corresponding values x_1 and x_2 can be found from eqn. (4). $N_{\rm op}$ is independent of $z_{\rm min}$, but the integral designated I_N is a measure of the ratio between the relative error in K and ny.

CONCENTRATION RANGE

The concentrations at the optimum conditions, i.e. x=a/b, are calculated from eqn. (4) for different values of y. At an infinite excess of A, $y_0=1/n$. x_1 , x_2 and x_{op} can be calculated for a given value of N_{op} , this giving the concentration range in which the mole ratio between A and B can be varied. y is proportional to the extinction: $y=E/\varepsilon db$, corresponding to an extinction coefficient $\varepsilon=nE_0/db$.

CALCULATIONS

To calculate the optimum conditions a special computer program was made. With this program calculations can be made for any composition m:n and for any value of W. The results of some different cases are given in Table 1. The calculations have been made for $N_{\rm op}=1.0$, 2.0, and 3.0, for $W=1.0\times10^4$, 1.0×10^3 , 1.0×10^2 , 10.0, 1.0 and 0.1 and for the following compositions: 1:1, 1:2, 1:3, 1:4, 2:2, 2:1, 3:1, and 4:1.

Table 1 gives ny_{op} and x_{op} for $z=z_{min}$. For a given value N_{op} , x_1 and x_2 corresponding to ny_1 and ny_2 are tabulated together with the integral I_N . Thus when determining the exact stability constant for a weak complex the optimum concentration range can be found from this table.

APPLICATION

When the stability constant of a given complex is going to be determined, an initial value K_1 for the stability constant is chosen. Then a suitable value for the concentration of the component kept constant must be found, this concentration should give suitable extinctions. A value for W is then selected

Acta Chem. Scand. 23 (1969) No. 8

Table 1. Optimum conditions for different stabilities and compositions.

$N_{ m op}$ = 3.0	I_N	3.9	$\tilde{5}.1$	0.9	8.9	5.1	3.9	4.2	$\tilde{5}.1$	3.9	5.1	6.0	8.9	5.1	4.0	4.6	5.9	3.9	5.1	0.9	6.7	5.5	4.2	5.3	1
	x^{2}	70000	107000	170000	280000	330	270	44	20	2000	10700	17000	28000	105	98	22	13	710	1070	1700	2800	34	59	12	
	ny_2								68.0	0.88	0.81	92.0	0.72	0.81	88.0	0.88	68.0	0.88	0.81	92.0	0.72	0.81	88.0	0.89	000
	x^{1}	1400	089	440	330	56	38	11.8	6.9	140	89	44	33	8.4	12	5.8	4.3	14	6.9	4.5	3.3	8.8	4.5	3.1	
	ny_1	0.12	0.11	0.10	0.09	0.11	0.13	0.13	0.14	0.12	0.11	0.10	0.00	0.11	0.13	0.14	0.15	0.13	0.11	0.10	0.09	0.11	0.13	0.15	
$N_{ m op}\!=\!2.0$	I_N	3.5	4.5	5.3	5.9	4.5	3.5	3.7	4.5	3.5	4.5	5.3	5.9	4.5	3.5	4.1	5.3	3.5	4.5	5.3	5.9	4.5	3.7	4.7	
	x^2	26000	74000	107000	160000	270	240	41	19	2600	7400	10700	16000	87	77	21	13	570	740	1070	1600	58	26	11.3	
	ny_2	0.85	0.77	0.72	0.68	0.77	0.85	0.85	98.0	0.85	0.77	0.72	0.68	0.77	0.85	98.0	0.87	0.85	0.77	0.72	0.68	0.78	0.86	0.87	
	x_1	1800	850	260	450	53	43	13	7.4	180	85	56	42	9.5	14	6.3	4.6	18	8.6	5.7	4.2	3.5	4.7	3.4	
	ny_1	0.15	0.13	0.12	0.11	0.13	0.15	0.16	0.17	0.15	0.13	0.12	0.11	0.13	0.15	0.17	0.19	0.15	0.13	0.12	0.11	0.14	0.16	0.19	
$N_{ m op}{=}1.0$	I_N	2.8	3.6	4.2	4.7	3.6	8.7	3.0	3.7	2.8	3.6	4.2	4.7	3.6	5.9	3.3	4.3	8.8	3.6	4.2	4.7	3.6	3.0	3.8	
	x^{2}	40000	44000	54000	00069	210	200	37	18	4000	4400	5400	0069	67	99	19	11.8	410	440	540	069	22	22	10.4	
	ny_2	_	0.71				_			0.80	0.71	99.0	0.61	0.72	08.0	0.82	0.83	0.80	0.71	99.0	0.61	0.72	0.81	0.83	
	x_1	2500	1200	800	610	35	20	14	8.3	250	120	8	61	11.3	16	7.2	5.3	25	12	8.5	6.2	3.8	5.6	3.9	_
	ny_1	0.20	0.17	0.15	0.14	0.17	0.20	0.21	0.23	0.20	0.17	0.15	0.14	0.17	0.50	0.22	0.25	0.20	0.17	0.15	0.14	0.18	0.21	0.25	
8	10000	0009	4800	4200	78	102	24	13	1000	009	480	420	25	33	12	8.4	101	61	48	42	8.5	11.5	8.9		
8	$ny_{ m op}$								0.55	0.50	0.41	0.37	0.33	0.42	0.51	0.54	0.58	0.50	0.42	0.37	0.33	0.43	0.52	0.57	_
8	m:m		1:2	1:3	1:4	2:5	2:1	3:1	4:1	::	1:2	1:3	1:4	2:5	2:1	3:1	4:1	1:1	1:2	1:3	1:4	2:5	2:1	3:1	-
*			104							103							102								

0.40 0.70 0.70 0.70 0.70 0.80 0.80 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73 109 180 280 280 111.7 10.7 7.2 6.9 9.2 13 20 31 4.6 5.0 0.43 0.21 0.13 0.097 0.55 0.98 11.5 2.0 0.51 0.24 0.15 0.15 0.15 0.100 0.100 9.13 9.12 9.10 9.10 9.13 9.16 9.22 0.19 0.17 0.15 0.18 0.18 0.22 0.26 0.30 0.43 0.38 0.33 0.29 0.38 0.39 0.42 0.85 0.77 0.72 0.68 0.78 0.87 0.89 0.87 0.79 0.73 0.69 0.80 0.91 0.91 0.92 0.84 0.73 0.84 0.93 0.94 0.94 0.52 0.26 0.16 0.119 0.64 0.13 1.7 0.57 0.27 0.16 0.113 0.58 1.14 1.8 2.1 0.99 0.65 0.49 1.2 1.9 2.1 0.16 0.14 0.12 0.11 0.16 0.19 0.23 0.23 0.20 0.18 0.16 0.22 0.22 0.31 0.48 0.42 0.36 0.31 0.37 0.45 0.45 2.9 4.11.4 6.0.033 7.0.035 7.035 7.0 0.18 0.018 0.019 0.020 0.020 0.030 0.0 2.0 0.38 0.088 0.074 0.074 1.16 1.10 0.59 0.59 0.59 0.33 1.17 1.17 1.0 0.1 10

Table 1. Continued.

17

and from Table 1 the optimum concentration range is found. The solutions are then prepared and the extinctions are measured, from these data a new K₂ is calculated. By consulting Table 1 again, the concentrations can be corrected and a new optimum concentration range found. New solutions are prepared and measured. These measurements give a new stability constant K_3 . This process must be repeated until the calculations give a stability constant K_n which corresponds to the optimum conditions chosen for this particular series of measurements.

REFERENCES

- 1. Hammond, P. R. J. Chem. Soc. 1964 479.
- Benesi, H. A. and Hildebrand, J. H. J. Am. Chem. Soc. 71 (1949) 2703.
 Person, W. B. J. Am. Chem. Soc. 87 (1965) 167.
 Klausen, K. S. and Langmyhr, F. J. Anal. Chim. Acta 40 (1968) 167.

Received December 2, 1968.